Serveur d'exploration sur Caltech

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On detecting terrestrial planets with timing of giant planet transits

Identifieur interne : 000281 ( Main/Exploration ); précédent : 000280; suivant : 000282

On detecting terrestrial planets with timing of giant planet transits

Auteurs : Eric Agol [États-Unis] ; Jason Steffen [États-Unis] ; Re'Em Sari [États-Unis] ; Will Clarkson

Source :

RBID : ISTEX:9AC31260B7F2996305968C13F181076797F634EF

English descriptors

Abstract

The transits of a distant star by a planet on a Keplerian orbit occur at time intervals exactly equal to the orbital period. If a second planet orbits the same star, the orbits are not Keplerian and the transits are no longer exactly periodic. We compute the magnitude of the variation in the timing of the transits, δt. We investigate analytically several limiting cases: (i) interior perturbing planets with much smaller periods; (ii) exterior perturbing planets on eccentric orbits with much larger periods; (iii) both planets on circular orbits with arbitrary period ratio but not in resonance; (iv) planets on initially circular orbits locked in resonance. Using subscripts ‘out’ and ‘in’ for the exterior and interior planets, μ for planet-to-star mass ratio and the standard notation for orbital elements, our findings in these cases are as follows. (i) Planet–planet perturbations are negligible. The main effect is the wobble of the star due to the inner planet, and therefore δt ∼ µin(ain/aout)Pout. (ii) The exterior planet changes the period of the interior planet by µout(ain/rout)3Pin. As the distance of the exterior planet changes due to its eccentricity, the inner planet's period changes. Deviations in its transit timing accumulate over the period of the outer planet, and therefore δt ∼ µouteout(ain/aout)3Pout. (iii) Halfway between resonances the perturbations are small, of the order of µouta2in/(ain − aout)2Pin for the inner planet (switch ‘out’ and ‘in’ for the outer planet). This increases as one gets closer to a resonance. (iv) This is perhaps the most interesting case because some systems are known to be in resonances and the perturbations are the largest. As long as the perturber is more massive than the transiting planet, the timing variations would be of the order of the period regardless of the perturber mass. For lighter perturbers, we show that the timing variations are smaller than the period by the perturber-to-transiting-planet mass ratio. An earth-mass planet in 2 : 1 resonance with a three-dimensional period transiting planet (e.g. HD 209458b) would cause timing variations of the order of 3 min, which would be accumulated over a year. This signal of a terrestrial planet is easily detectable with current ground-based measurements. For the case in which both planets are on eccentric orbits, we compute numerically the transit timing variations for several known multiplanet systems, assuming they are edge-on. Transit timing measurements may be used to constrain the masses, radii and orbital elements of planetary systems, and, when combined with radial velocity measurements, provide a new means of measuring the mass and radius of the host star.

Url:
DOI: 10.1111/j.1365-2966.2005.08922.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>On detecting terrestrial planets with timing of giant planet transits</title>
<author>
<name sortKey="Agol, Eric" sort="Agol, Eric" uniqKey="Agol E" first="Eric" last="Agol">Eric Agol</name>
</author>
<author>
<name sortKey="Steffen, Jason" sort="Steffen, Jason" uniqKey="Steffen J" first="Jason" last="Steffen">Jason Steffen</name>
</author>
<author>
<name sortKey="Sari, Re Em" sort="Sari, Re Em" uniqKey="Sari R" first="Re'Em" last="Sari">Re'Em Sari</name>
</author>
<author>
<name sortKey="Clarkson, Will" sort="Clarkson, Will" uniqKey="Clarkson W" first="Will" last="Clarkson">Will Clarkson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9AC31260B7F2996305968C13F181076797F634EF</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1111/j.1365-2966.2005.08922.x</idno>
<idno type="url">https://api.istex.fr/document/9AC31260B7F2996305968C13F181076797F634EF/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000736</idno>
<idno type="wicri:Area/Main/Curation">000736</idno>
<idno type="wicri:Area/Main/Exploration">000281</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Exploration">000281</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">On detecting terrestrial planets with timing of giant planet transits</title>
<author>
<name sortKey="Agol, Eric" sort="Agol, Eric" uniqKey="Agol E" first="Eric" last="Agol">Eric Agol</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Steffen, Jason" sort="Steffen, Jason" uniqKey="Steffen J" first="Jason" last="Steffen">Jason Steffen</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sari, Re Em" sort="Sari, Re Em" uniqKey="Sari R" first="Re'Em" last="Sari">Re'Em Sari</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Theoretical Astrophysics, MS 130-33, Caltech, Pasadena, CA 91125</wicri:regionArea>
<wicri:noRegion>CA 91125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clarkson, Will" sort="Clarkson, Will" uniqKey="Clarkson W" first="Will" last="Clarkson">Will Clarkson</name>
<affiliation>
<wicri:noCountry code="subField">6AA</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbrev">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2005-05-11">2005-05-11</date>
<biblScope unit="volume">359</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="567">567</biblScope>
<biblScope unit="page" to="579">579</biblScope>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
<idno type="istex">9AC31260B7F2996305968C13F181076797F634EF</idno>
<idno type="DOI">10.1111/j.1365-2966.2005.08922.x</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>eclipses</term>
<term>planetary systems</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The transits of a distant star by a planet on a Keplerian orbit occur at time intervals exactly equal to the orbital period. If a second planet orbits the same star, the orbits are not Keplerian and the transits are no longer exactly periodic. We compute the magnitude of the variation in the timing of the transits, δt. We investigate analytically several limiting cases: (i) interior perturbing planets with much smaller periods; (ii) exterior perturbing planets on eccentric orbits with much larger periods; (iii) both planets on circular orbits with arbitrary period ratio but not in resonance; (iv) planets on initially circular orbits locked in resonance. Using subscripts ‘out’ and ‘in’ for the exterior and interior planets, μ for planet-to-star mass ratio and the standard notation for orbital elements, our findings in these cases are as follows. (i) Planet–planet perturbations are negligible. The main effect is the wobble of the star due to the inner planet, and therefore δt ∼ µin(ain/aout)Pout. (ii) The exterior planet changes the period of the interior planet by µout(ain/rout)3Pin. As the distance of the exterior planet changes due to its eccentricity, the inner planet's period changes. Deviations in its transit timing accumulate over the period of the outer planet, and therefore δt ∼ µouteout(ain/aout)3Pout. (iii) Halfway between resonances the perturbations are small, of the order of µouta2in/(ain − aout)2Pin for the inner planet (switch ‘out’ and ‘in’ for the outer planet). This increases as one gets closer to a resonance. (iv) This is perhaps the most interesting case because some systems are known to be in resonances and the perturbations are the largest. As long as the perturber is more massive than the transiting planet, the timing variations would be of the order of the period regardless of the perturber mass. For lighter perturbers, we show that the timing variations are smaller than the period by the perturber-to-transiting-planet mass ratio. An earth-mass planet in 2 : 1 resonance with a three-dimensional period transiting planet (e.g. HD 209458b) would cause timing variations of the order of 3 min, which would be accumulated over a year. This signal of a terrestrial planet is easily detectable with current ground-based measurements. For the case in which both planets are on eccentric orbits, we compute numerically the transit timing variations for several known multiplanet systems, assuming they are edge-on. Transit timing measurements may be used to constrain the masses, radii and orbital elements of planetary systems, and, when combined with radial velocity measurements, provide a new means of measuring the mass and radius of the host star.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Clarkson, Will" sort="Clarkson, Will" uniqKey="Clarkson W" first="Will" last="Clarkson">Will Clarkson</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Agol, Eric" sort="Agol, Eric" uniqKey="Agol E" first="Eric" last="Agol">Eric Agol</name>
</region>
<name sortKey="Agol, Eric" sort="Agol, Eric" uniqKey="Agol E" first="Eric" last="Agol">Eric Agol</name>
<name sortKey="Sari, Re Em" sort="Sari, Re Em" uniqKey="Sari R" first="Re'Em" last="Sari">Re'Em Sari</name>
<name sortKey="Steffen, Jason" sort="Steffen, Jason" uniqKey="Steffen J" first="Jason" last="Steffen">Jason Steffen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amerique/explor/CaltechV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000281 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000281 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amerique
   |area=    CaltechV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:9AC31260B7F2996305968C13F181076797F634EF
   |texte=   On detecting terrestrial planets with timing of giant planet transits
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 11:37:59 2017. Site generation: Mon Feb 12 16:27:53 2024